办好新时代一流高等教育,推进现代化建设人才培养******
党的二十大报告明确了以中国式现代化全面推进中华民族伟大复兴的中心任务,擘画了全面建设社会主义现代化国家的宏伟蓝图,并特别强调了教育、科技、人才对于全面建设社会主义现代化国家的基础性、战略性支撑作用。对此,我们作为高等教育工作者深感使命光荣、责任重大,必须将二十大精神具体落实到办好人民满意的新时代一流高等教育上,落实到加快建设中国特色、世界水平的高等教育强国上,切实为我国社会主义现代化建设事业培养更多更好的优秀人才。
面向现代化建设需要,高校要坚持和加强党的全面领导,坚持为党育人、为国育才的正确方向。高校党组织要牢牢把握社会主义办学方向,在应对错误思潮、违法乱纪、学术腐败等各种风险挑战中敢于斗争、善于斗争,塑造风清气正的高校生态。要切实执行中央部署,不折不扣贯彻落实党和国家关于教育、科技、人才的大政方针,有效治理形式主义、官僚主义,纠正片面的人才评价标准和绩效观,打通高校“最后一公里”。要科学谋划、统筹协调,有效开展学校层面的顶层设计,用清晰明确的制度规范引导和管理校内教学科研机构和各职能部门,最大限度提升有限教育资源的运行效率。要深入一线多开展走访调研、恳谈交心,掌握实际情况、解决实际问题,把党的关心关爱传递到每一位师生员工,加强群众对党的认同感和向心力。
面向现代化建设需要,高校要落实立德树人根本任务,为社会主义现代化建设培养造就大批德才兼备的高素质人才。要把对社会主义现代化的支撑做实,必须坚持“德者,才之帅也”的立场,落实立德树人根本任务,塑造未来人才的高尚品德修养,不惧风险、不受诱惑、堪当伟业。要为青年树立理想信念的明确标杆,引导其无愧于前沿性、专业化、高层次人才的培养定位,矢志成长为民族复兴和现代化建设的先锋力量。要引导青年树立正确价值观,强化对社会主义核心价值观的深层认同,自觉同歪风邪气划清界限并开展斗争,在当今世界范围激烈的人才争夺中,引导新时代青年胸怀忧国忧民之心、爱国爱民之情。要为青年提供品德养成的有效平台,形成全员、全过程、全方位育人的大思政格局,领导干部率先垂范,学者专家倾情投入,提高学生接受思政教育的获得感和实效。
面向现代化建设需要,高校要着力提高学术研究水平,坚持以“四个面向”为引领全面提高人才自主培养能力。创新在我国现代化建设全局中居于核心地位,高校学术研究要坚持面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,自觉汇入高水平科技自立自强和创新型国家建设事业,并转化到人才自主培养能力提升上。要对接中国现代化建设步伐,制定既长远又可行的目标,整合学术资源有重点地建设,“下得苦功夫,求得真学问”,不畏难、不浮夸,不断生成具备真情怀的科研队伍,不断提升具备硬实力的科研绩效,形成创新成果渐进式积累和颠覆性突破的辩证统一。要适应当今世界新型竞争态势,善于在新时代对外开放中合作和竞争,努力实现关键核心技术自主可控,把学术研究领域追求领先度、声誉度同国家现代化发展的竞争力、话语权有机联系起来。要辐射带动全社会发展进步,引导师生立足中国大地做研究、写文章,以向中国社会主义现代化国家建设源源不断输送人才为主渠道,为中国经济社会建设、人的全面发展提供智力支持和思想引领。
面向现代化建设需要,高校要创新谋划学科建设布局,发挥学科建设对于人才培养的支撑作用。要以国家和地区重大战略需求为导向,优化学科结构,强化学科基础,凝练学科方向,超前谋划新兴交叉学科布局。要主动对接国家战略,打造高水平学科平台,深耕细作基础力量雄厚、学科实力过硬的优势学科,重点发展跻身前沿的优势特色学科,积极布局引领人类未来发展方向的新兴学科,抢占学科高地。要深化问题导向,创新学科组织模式,突破传统学科边界壁垒,以学科群建设为抓手,推动形成人才培养、科学研究及技术开发的全学科有机融合。要以“中国特色、世界一流”为目标深化教育国际交流与合作,通过构建长期稳定的对外合作交流机制,拓宽师生国际视野,增长师生国际见识,激发师生国际交流合作的热情与实效。
面向现代化建设需要,高校要厚植家国情怀、担当时代使命,培养心怀“国之大者”、脚踏实地奋斗的新时代人才。高校一切办学、教学、研究、建设,归根结底要让人才把青春的绚丽之花绽放在全面建设社会主义现代化国家的火热实践中,落实到脚踏实地沉潜奋斗的长久行程中。要引导学生心怀“国之大者”,把握大势,敢于担当,善于作为,树立为全面建设社会主义现代化国家、全面推进中华民族伟大复兴贡献力量的大志,争做伟大理想的追梦人,争做伟大事业的生力军。要培育学生增强本领才干,“大志非才不就,大才非学不成”,必须让其惜时如金、孜孜不倦、心无旁骛,自觉按照党和人民的要求锤炼、提高自己,努力成为兼收并蓄、融会贯通、经世致用、全面发展的大才,让勤奋学习成为青春远航的动力,让增长本领成为青春搏击的能量。要指引学生瞄准改革实践,“道虽迩,不行不至;事虽小,不为不成”,必须让其知行合一、求真务实,守正创新、迎难而上,担当为民族复兴铺路架桥、为祖国建设添砖加瓦的大任。
上海财经大学有效落实党对学校工作的全面领导,始终把政治建设摆在首位,坚持人才培养正确方向。始终将科学研究作为学校基础工作,推动“顶天立地”科研育人。鼓励教师扎根中国大地、紧跟学术前沿,将论文写在中国大地上。强化教学投入,推动教材体系、教学环节改革创新和科研优势转化,实现科研教学有机融合、双向促进。始终将学科建设作为学校的龙头工作,以一流学科高质量建设推动学科育人。全力建设“应用经济学”一流学科,打造应用经济学学科特区,加快新文科建设,推动信息技术与经济管理等主干学科深度交叉融合,积极布局符合时代所需、具有上财特色的学科体系,夯实学科育人根基。始终将人才培养作为学校工作的重中之重,大力推进人才培养模式改革创新。学校全面落实立德树人根本任务,不断破解教育改革发展难题,打造具有学校特色的“三全育人”思政教育体系,努力培养具有坚定理想信念、全球视野和民族精神,富有创造力、决断力、组织力、坚韧力的卓越财经人才,为办好新时代一流高等教育、推进现代化建设人才培养进行上财探索、作出上财贡献。
(作者:许涛,系上海财经大学党委书记)
《光明日报》( 2023年01月12日 05版)
我国空间新技术试验卫星第二批科学与技术成果发布******
记者从中科院微小卫星创新研究院获悉,我国“创新X”系列首发星——空间新技术试验卫星第二批科学与技术成果近日发布。这批成果主要包括获得我国首幅太阳过渡区图像、探测到迄今最亮的伽马射线暴、首次获得全球磁场勘测图等。
01
46.5nm极紫外成像仪获得我国首幅太阳过渡区图像
46.5nm极紫外太阳成像仪(SUTRI)是国际首台基于多层膜窄带滤光技术的46.5nm太阳成像仪,用于探测50万度左右的太阳过渡区(太阳色球与日冕之间的层次),由国家天文台联合北京大学、同济大学、西安光学精密机械研究所和微小卫星创新研究院共同研制。自2022年8月30日载荷开机以来已经获取了超过1.6TB的探测数据,成功实现了我国首次太阳过渡区探测。这也是人类近半个世纪来首次在46.5nm波段拍摄太阳的完整图像。SUTRI拍摄的图像清晰地显示了过渡区网络组织、活动区冕环系统、日珥和暗条、冕洞等结构(如图2),这些结构的观测特征表明,SUTRI拍摄的确实是从太阳低层大气往日冕过渡的结构,符合预期。SUTRI已探测到多个耀斑、喷流、日珥爆发和日冕物质抛射事件(如图3),表明其数据适合研究各种类型的太阳活动现象。此外,SUTRI还发现活动区普遍存在50万度左右的、朝向太阳表面的物质流动,这些流动在太阳大气的物质循环过程中占有重要地位。目前SUTRI一切功能正常,在轨测试和标定结束后,SUTRI观测的科学数据将向国内外太阳物理和空间天气同行全部开放。
△图1 “创新X”首发星——空间新技术试验卫星(SATech-01)
△图2 SUTRI在2022年9月29日观测到的太阳活动图(图片由SUTRI科学团队提供)
△图3 SUTRI在2022年9月23日观测到的一次太阳爆发事件(图片由SUTRI科学团队提供)
02
高能爆发探索者(HEBS)捕获到迄今为止最亮伽马暴
由中科院高能物理研究所研制的高能爆发探索者(HEBS)于北京时间2022年10月9日21时17分,与我国慧眼卫星和高海拔宇宙线观测站同时探测到迄今最亮的伽马射线暴(编号为GRB 221009A)。根据HEBS的精确测量结果,该伽马暴比以往人类观测到的最亮伽马射线暴还亮10倍以上。由于该伽马射线暴的亮度极高,国际上绝大部分探测设备均发生了严重的数据饱和丢失、脉冲堆积等仪器效应,难以获得精确测量结果。HEBS凭借创新的探测器设计以及新颖的高纬度观测模式设置,探测器经受住了高计数率的考验,获得了高时间分辨率的光变曲线,以及10千电子伏至5兆电子伏的宽能段能谱。HEBS极为宝贵的精确测量结果对于揭示伽马射线暴的起源和辐射机制具有重要意义。
国家天文台和上海技术物理研究所研制的EP探路者龙虾眼X射线成像仪(LEIA)于10月12日也成功对这一伽马射线暴开展了观测,探测到了伽马射线暴X射线余辉。这也是国际上首次用龙虾眼型X射线望远镜探测到伽马射线暴。
△图4 高能爆发探索者(HEBS)发现并精确测量迄今最亮的伽马射线暴,打破多项纪录。
03
国产量子磁力仪首次空间应用并获得全球磁场图
由中国科学院国家空间科学中心和沈阳自动化研究所联合研制的国产量子磁力仪(CPT)及伸展臂,可实现全球地磁矢量和标量高精度测量。2022年11月7日,多级套筒式无磁伸展臂顺利展开,将各传感器探头伸出约4.35米距离,处于伸展臂顶端的CPT原子/量子磁力仪探头、AMR磁阻磁力仪探头、NST星敏感器获取了有效探测数据,首次在轨验证了磁场矢量和姿态一体化同步探测技术,磁测量噪声峰峰值<0.1nT,实现了国产量子磁力仪的首次空间验证与应用。
△图5 CPT磁测系统“多级套筒式无磁伸展臂”地面展开测试(图片由沈自所、空间中心和卫星团队提供)
△图6 量子磁力仪首张全球磁场勘测图(图片由空间中心太阳活动与空间天气重点实验室提供)
△图7 NST星敏感器相对于卫星本体的姿态数据(图片由空间中心和中科新伦琴NST星敏团队提供)
04
空间载荷、平台新技术成果丰富
由中国科学院长春光学精密机械与物理研究所空间新技术部研制的多功能一体化相机,首次采用基于共口径多出瞳光学系统新体制,在轨实现集可见光、长波红外、彩色微光于一体的空间光学遥感观测。相机于2022年9月24日开机,成功取得首张170km×42km大幅宽地面遥感图像(如图8),探索了单台相机即可同时实现多谱段多模态遥感成像的新模式,为我国未来高集成度一体化空间光学遥感载荷发展提供了技术储备。
△图8 多功能一体化相机对地宽幅遥感成像图(图片由长春光学精密机械与物理研究所提供)
由中国科学院半导体研究所、自动化研究所、微小卫星创新研究院及浙江大学航空航天学院空天信息技术研究所联合研制的异构多核智能处理单元也取得了首批成果。半导体所的低功耗边缘计算型智能遥感视觉芯片,实现了遥感图像的高速智能化目标检测;自动化所的通用智能系统验证了基于高速交换网络的异构多处理器模块化、弹性化硬件架构;浙江大学的国产AI系统装载了细胞分割算法和飞机识别算法,数据结果与地面孪生系统数据一致,在功耗10瓦条件下算力达到22Tops,验证了国产AI器件的在轨智能图像处理能力。
△图9 边缘计算型遥感视觉芯片检测遥感目标示意图(图片由中科院半导体所提供)
中科院微小卫星创新院的可展收式辐射器成功在轨实现首次应用,辐射器执行机构已顺利完成六十余次展开和收拢动作,连续五轨动态试验结果(如图10)表明环路热管-可展收式辐射器集成系统在负载工作时段启动性能良好,辐射器连续展开-收拢可实现散热能力在轨大范围调控。
△图10 环路热管-可展收式辐射器集成系统连续五轨智能热控测试结果
国家空间科学中心研制的空间元器件辐射效应试验平台载荷开机运行良好,搭载的元器件在测试期间均工作正常。
“科学与技术成果的涌现体现了我们对这颗卫星‘创新X,创新无极限’的定位,开创了新技术众筹模式的先河。”“力箭一号”工程副总师兼卫星系统总师张永合说,“这些新载荷、新技术产品都是各参与方自主投入的,不少是从0到1的创新,通过试验星将创新技术快速集成并飞行验证,可以加快核心关键技术从基础研究到在轨应用的成果转化。”
2022年7月27日12时12分,由中国科学院自主研制的迄今我国最大固体运载火箭“力箭一号”(ZK-1A)在酒泉卫星发射中心成功发射,采用“一箭六星”的方式,将“创新X”系列首发星——空间新技术试验卫星等六颗卫星送入预定轨道。2022年9月5日,空间新技术试验卫星(SATech-01)发布了首批科学成果,包括龙虾眼X射线成像仪(LEIA)的国际首幅宽视场X射线聚焦成像天图,伽马射线暴载荷(HEBS)的首个伽马暴等。
作为我国“创新X”系列的首发星,未来一段时间,空间新技术试验卫星搭载的几种新型推进系统等载荷也将开展在轨试验,卫星上的四个科学载荷也已进入常规化观测,陆续将会获得更多科学和技术成果。
(总台央视记者 帅俊全 褚尔嘉)
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |